Making Static Lessons Adaptive through Crowdsourcing & Machine Learning

Joseph Jay Williams, Juho Kim, Elena Glassman, Anna Rafferty and Walter S. Lasecki.
Harvard University
Korea Advanced Institute of Science and Technology (KAIST)
MIT Computer Science and Artificial Intelligence Laboratory (CSAIL)
Carleton College
University of Michigan

Text components of digital lessons and problems are often static: they are written once and too often not
improved over time. This is true for both large text components like webpages and documents as well as
the small components that form the building blocks of courses: explanations, hints, examples, discussion
questions/answers, emails, study tips, motivational messages. This represents a missed opportunity, since
it should be technologically straightforward to enhance learning by improving text, as instructors get new
ideas and data is collected about what helps learning. We describe how instructors can use recent work
(Williams, Kim, Rafferty, Maldonado, Gajos, Lasecki, & Heffernan, 2016a) to make text components into
adaptive resources that semi-automatically improve over time, by combining crowdsourcing methods
from human computer interaction (HCI) with algorithms from statistical machine learning that use data
for optimization.

INTRODUCTION

Many online education resources are arguably static and one size fits all. They provide significant
content, but like a textbook, provide the same explanations and material to all users. Once the resource
has been created, it generally remains constant, with text and pictures rarely changing, regardless of how
helpful they are for learning. There is little technology support for instructors to do rapid content iteration,
or to collect data that they can use to decide which versions are better than others.

An Intelligent Tutoring System (ITS) provides one alternative to this static instruction. ITSs deliver
different versions of a learning experience to each student, based on their knowledge, attitudes, or
behavior. However, this may require instructors to generate alternative versions of the content. Most
instructors don’t have the resources to make many different versions of lessons, such as alternative
explanations and examples, and they may not be sure which explanations and examples will be most
effective.

How can instructors turn static text into adaptive components that can be perpetually enhanced? This
chapter discusses how the goals of instructors and of researchers in the learning sciences can be advanced
by integrating crowdsourcing and design ideas from human computer interaction (HCI) with machine
learning algorithms that provide automatic optimization. The approach is illustrated by describing a
system that instructors can use as a plugin to improve text components of instruction. It is called the
Adaptive eXplanation Improvement System (AXIS) and was first reported in Williams, Kim, Rafferty,
Maldonado, Gajos, Lasecki, & Heffernan (2016a).

AXIS lets an instructor designate existing an static explanation to be turned into an adaptive, data-driven
component that tests out different explanations and improves over time. Each component asks learners to
explain why an answer to a problem is correct, which promotes reflection and understanding (Williams &



Lombrozo, 2010), as is well-established in education as the self-explanation effect (Chi et al, 1989; 1994;
Lombrozo, 2006). At the same time, learners explanations can be collected and then presented to help
future students learn, given the importance of high quality explanations (Renkl, 1997). The instructor then
indicates how explanations should be compared (e.g., based on learner ratings or on learner performance
on a related problem), and AXIS applies a machine learning algorithm automatically analyze and use the
data being collected to choose better explanations for future students. For example, in a computer science
class, one might want to determine what explanation of a sorting algorithm is most clear to learners, as
measured by students’ rating of the helpfulness of the explanation. If learners are provided with the
opportunity to rate the explanation that was provided to them, their responses can be used to select better
explanations for future learners.

The original paper (Williams et al, 2016a) provides the technical details of the system design and
algorithm. The current chapter is intended to provide a higher level overview of how the approach is
relevant to instructors and researchers outside of HCI and machine learning. In that vein, we begin with a
brief overview of relevant work.

RELATED WORK

Human Computation & Crowdsourcing for Education

Creating usable, understandable explanations for answers to problems is a task that current artificial
intelligence (Al) approaches still struggle to achieve, although great success has been made in building
intelligent conversational tutors for specific tasks (e.g., Graesser, Chipman, Haynes, Olney, 2005).
Crowdsourcing for human computation has been used to create useful systems in a variety of settings
where Al still struggles (Doan, Ramakrishnan, & Halevy, 2011), like assistance editing word documents
(Bernstein et al., 2010). These systems achieve scalability by reducing the skill level needed by
individuals in a crowd to complete components of a task (e.g., see Scribe, Lasecki et al., 2012).

Paulin and Haythornthwaite (2016) explore different facets of online education that can be crowdsourced.
Yuan et al. (2016) specifically explore how rubric-guided crowd workers can produce helpful feedback
on students’ design submissions. Weir, Kim, Gajos, & Miller (2015) introduce the idea of
‘learnersourcing’ as a way to elicit useful improvements to an educational system from ‘crowds’ of
learners, as a byproduct of their natural interaction with educational content (see also Kim, 2015; Kim et
al, 2014).

Glassman & Miller (2016) describe a learnersourcing system that, through personalized prompts, collects
hints for students from peers who have already acquired the expertise necessary to generate them. These
hints helped students debug computer processors and design better transistor-based logic gates. The
current chapter is similar in collecting learnersourced explanations and hints. Additionally, our work
collects feedback from students, using machine learning to analyze this data and infer how popular
explanations are, then actively change the system to present explanations more frequently as evidence
accrues as to their effectiveness.

Tradeoffs between Experimentation & Optimization



Randomized experimental comparisons are a powerful method for quantitatively determining what is
effective — from instructors and researchers identifying which of multiple explanations is satisfying, to
doctors identifying which drug promotes health to product designers evaluating new interfaces.
Experiments have brought great value to web analytics under the label of A/B ftesting (Kohavi,
Longbotham, Sommerfield, & Henne, 2009).

Typically experimental comparisons assign people to conditions with equal probability (e.g., 50% to
explanation A and 50% to explanation B) since this provides maximal statistical power to detect
differences, relative to random assignment that uses non-equal probabilities (e.g., 30% to explanation A
and 70% to explanation B). Both approaches are random in the sense that it is not known which condition
a participant will be assigned to (that is sampled), but not random in the more limited sense that the
probability of being assigned to any condition is equal. Both approaches are statistically valid in allowing
causal conclusions. The approach of random assignment with different probabilities provides the
opportunity to reduce (but not eliminate) statistical power to discover differences, in order to maximize
actual benefit to the participants in the experiment, since a greater proportion of them could receive the
more beneficial condition.

This raises many instructional, statistical, and ethical questions, which instructors and researchers will
themselves have to answer. In this chapter we describe how this connects to a classic problem in
reinforcement learning: Balancing exploitation of what has already been observed with exploration to
learn more about different options.

Reinforcement Learning: Multi-Armed Bandits

Reinforcement learning (RL) is a type of machine learning that allows a system to learn through
interaction with an environment (see Sutton & Barto, 1998 for an overview). RL algorithms try out
different actions, and seek to determine what actions tend to be most effective. What is “effective” is
defined by the algorithm designer as a particular parameter to optimize; in the case above, an effective
website is one that generates mailing list sign ups.

In cases like testing different versions of websites or deciding what ads to show users, a class of
algorithms known as multi-armed bandit algorithms are commonly used. The term multi-armed bandit
comes from analogy to slot machines (‘bandits’ that ‘steal money’ when you pay them) that have multiple
arms to pull, with unknown and uncertain payoffs. A player may be trying to determine what arm to pull
(what action to take) to get as large of a payoff as possible, which requires balancing exploration of arms
against exploitation of arms that seem to be good.

While there are many different bandit algorithms (e.g., Auer, Cesa-Bianchi, & Fischer, 2002; Chapelle &
Li, 2011), all of them seek to optimize the total effectiveness of the selected options, and do so even when
effectiveness is stochastic. In the case of educational applications, we define the payoff based on some
measure we are trying to optimize, such as learning or motivation, and the “arms” (actions) are different
versions of educational content. Multi-armed bandit algorithms provide a scalable, model free way of
optimizing our choices so that we will end up being as effective as possible for as many students as
possible (Clement et al, 2014; Liu, Mandel, Brunskill, & Popovic, 2014).



Multi-armed bandit algorithms seek to maximize the total cumulative effectiveness of all actions over a
period of time. For instance, if after one hour, 2% of users of version A and 5% of users of version B have
signed up for the website, this type of algorithm will tend to assign more users to version B, since it has
observed evidence that this version is more effective. However, it will still allocate some users to version
A because it is not yet certain which is better: it may just be by chance that more people have signed up
with version B, especially if only a small number of users have viewed the site. As the number of users
increases, the algorithm’s confidence in which version will be more effective increases, and it will tend to
assign almost all users to the most effective option.

MAKING STATIC TEXT COMPONENTS ADAPTIVE

We illustrate our approach in a system for creating adaptive explanations for math problems, the Adaptive
eXplanation Improvement System (AXIS; Williams et al., 2016). In the following sections we provide
context about the value of explanations, then describe how an instructor can set up AXIS for adding and
adapting the explanations for how to solve math problems.

Explanations in Math Problems

To provide context for an instructor’s goal of making explanations in math problems adaptive, consider
the ubiquitous structure of problem activities in platforms like Khan Academy, ASSISTments, EdX, and
Coursera. Students attempt a problem and are given feedback about whether their answer is correct. They
may also be able to request an explanation or elaboration that explains why an answer is correct, or how
to solve the problem. The value of providing quality explanations is clear from the educational and
psychological literature, although it is an active area of research as to which explanations are deemed
satisfying, and actually help learning (Lombrozo, 2006; Renkl, 1997).

Learnersourcing Interface for Eliciting Contributions

Typically, a student might see no explanation after solving a problem, or if one is given, it was written by
the instructor who wrote the problem. To elicit explanations from students that can be used for future
learners, we add a reflection prompt, asking the student to explain why the answer was correct in their
own words. The prompt tells the learner that generating the explanation will help them solidify their
knowledge, as shown in Figure 1. The design of this prompt is guided by decades of research in
psychology and education on the benefits of generating explanations for learning (Chi et al., 1994;
Williams & Lombrozo, 2010; Williams, Lombrozo, Hsu, Huber, & Kim, 2016).

The prompt of course is designed to serve a second function, which is to generate explanations that future
students might find helpful, in the spirit of crowdsourcing in HCI. These learner-generated explanations
can be tested on future learners using reinforcement learning algorithms that evaluate the explanations
using performance metrics designated by instructors.



Explain out loud and in your own words how to solve the problem. Then write the explanation below.

You have probably heard of the saying "the best way to learn is to teach".
Right now, try explaining out loud why the answer above is correct, and how to solve the problem. Imagine explaining to another
learner, if the two of you were sitting at your computer working on this together.

Then write your explanation into the text box below. It will help you, and could help another learner similar to you.

You will might feel as though you don't understand this well enough to explain it. But constructing an explanation will still help you
learn, by helping you spot gaps in your knowledge, and connecting different facts and principles together.

Explaining will prepare you better for the problems that are coming up.

As you write, you can create a helpful explanation by copy/pasting some text from the explanations you received. But don't do this
without making changes if these aren't the words you would actually use.

&

Figure 1. A prompt for a learner to explain how to solve a math problem.

Choosing Performance Metrics

The instructor must decide what metric the system should be maximizing via its choice of text
component. For example, in the Williams et al. (2016a) deployment of AXIS, we decided to maximize
learners’ ratings of how helpful explanations were for learning. To maximize learners’ ratings of
helpfulness, an instructor can insert an additional question for learners who receive an explanation to
answer: “How helpful do you think this explanation is for learning?”’ Students can respond on a Likert
scale, such as: 1 (Absolutely Unhelpful) to 10 (Perfect), as shown in Figure 2. In future versions of this
system, instructors could choose to optimize a combination of performance measures, such as learners’
accuracy on subsequent problems and the likelihood that they keep working.

Explanation: Here is an explanation someone wrote of why the answer is right, and how to solve the problem

The probability of getting a chocolate cookie on his first draw is 5/8. If he draws a chocolate cookie, there will be 4 chocolate
cookies and 3 oatmeal cookies left, so the probability of getting an oatmeal cookie on his second draw is 3/7. (5/8)"(3/7)=15/56.

How helpful do you think this explanation is for learning?

Absolutely
Unhelpfu Perfect
1 2 3 4 5 6 7 8 9 10

Figure 2. An example of an explanation of how to solve a particular math problem, with a prompt
to rate the helpfulness of the explanation.

An instructor might wish to optimize a more direct measure of learning or progress toward the instructor’s
long-term goals. For instance, the value of each text option could be based on how many learners who



saw that option got the next problem correct. We considered this measure but found that confounding
factors, such as variations in knowledge across students, overwhelmed the relative differences in quality
between explanations. Increasing the number of learners using the system would allow the machine
learning algorithms to better cope with these confounding factors.

Deployment of AXIS

We (Williams et al, 2016a) deployed the AXIS system with 75 and then 150 learners, numbers
comparable to multiple offerings of large residential introductory courses, and sought to optimize the
helpfulness of the explanations as rated by learners.

As learners solved problems, their construction of a deep understanding was guided by prompting them to
explain why answers were correct. These explanations were captured and then provided to other learners,
so that after receiving the correct answer, future learners could read an explanation of why the answer was
correct. Learners were asked to indicate how helpful an explanation was on a scale from 1 to 10. A multi-
armed bandit algorithm then automatically incorporated the rating from each new learner, and used the
ratings to alter the probabilities of which explanation it would present to the next learner. Those that
tended to be highly rated were presented more frequently, and AXIS automatically incorporated new
explanations that were given by users into the pool of explanations that it delivered. Figure 3 shows
examples of explanations from several different categories: explanations discarded by AXIS, explanations
identified as good by “Early Stage AXIS” (after just 75 learners), explanations identified as good by
“Later Stage AXIS” (after 150 learners), and explanations written by an instructional designer on the
ASSISTments platform.

We evaluated the explanations produced by the AXIS system after 75 learners (“Early Stage AXIS”) and
150 learners (“Later Stage AXIS”). Relative to the original math problems that had no explanations,
adding AXIS’s crowdsourced and intelligently selected explanations to math problems significantly
improved learners’ subjective learning experience, as measured by their ratings of how much they learned
(effect size of AXIS explanations impact on subjective ratings of learning, vs no explanation: d = 0.29; vs
instructional designer: d = 0.06; vs filtered explanation: d = 0.22).

In addition, these learner-generated explanations from AXIS also objectively increased learning, as
measured by performance improvements on related problems that were presented in a pre-fest (before
studying problems) and then again in a post-test (after studying problems under different conditions, like
receiving vs not receiving AXIS explanations). Overall increases in accuracy solving problems were
observed for AXIS explanations, vs no explanation : d = 0.19; vs instructional designer: d = 0.09; vs
filtered explanation d = 0.01. Breaking up accuracy into isomorphic and transfer problems: The increases
were observed on isomorphic problems, that were identical except for changing the numbers in the
problem (vs no explanation: d = 0.12; vs. instructional designer: d = 0.11; vs. filtered explanation: d =
0.07), as well as on transfer problems, that were completely novel but tested generalization of the concept
(vs no explanation: d = 0.22; vs instructional designer: d = 0.04; vs filtered explanation: d = 0.26).



Figure 3. Examples of learner-generated explanations collected and delivered by AXIS, as
described in Williams et al., 2016.

Instructor Review in AXIS

At any point, the instructor can inspect the pool of explanations in the system, see the policy for how
often each explanation is being presented, and also see the data about how explanations have been rated
so far by students. Figure 4 shows a screenshot from a prototype view we have built for instructors, which
provides a rough illustration of the kind of information instructors can see, and how they could change
components of AXIS. This can be valuable in informing instructors about their “expert blind spots” about
which explanations students will find helpful (Nathan, Koedinger, Alibali, 2001). The policy is the
probability that each explanation will be presented, and directly reflects the reinforcement learning
algorithm’s “judgment” of how much evidence suggests that this explanation is the best explanation, with
respect to the instructor’s performance metric.



